If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=2500
We move all terms to the left:
n^2-(2500)=0
a = 1; b = 0; c = -2500;
Δ = b2-4ac
Δ = 02-4·1·(-2500)
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100}{2*1}=\frac{-100}{2} =-50 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100}{2*1}=\frac{100}{2} =50 $
| n^2=2500 | | n^2=2500 | | n^2=2500 | | 3(4c-6)=4c+2(4c-9 | | 60x=50x+30 | | 60x=50x+30 | | X=100-0.5x^2×x | | 60x=50x+30 | | 60x=50x+30 | | 60x=50x+30 | | 60x=50x+30 | | 3(x-7)+9x=4(3x+12) | | 0.69+35x=1.39x | | 0.69+35x=1.39x | | 9u=6u+3 | | 9u=6u+3 | | 3x18=6x+27 | | 3x18=6x+27 | | -8a=-90 | | 2x+34=9-36 | | 2x+34=9-36 | | 2x+34=9-36 | | B(x)=9.3 | | x-8+3x-11+x+8+x+2x+7=540 | | x-8+3x-11+x+8+x+2x+7=540 | | 1/2x-2/5=-2 | | 1/2x-2/5=-2 | | (7x-9)=(4x-90) | | (7x-9)=(4x-90) | | (7x-9)=(4x-90) | | (7x-9)=(4x-90) | | 6=-3(2n-3) |